Analizador ABL90 FLEX PLUS

Su analizador de gases en sangre para las pruebas en el "point of care"

  • Solicitar información
    Me gustaría recibir noticias e información de Radiometer a través del canal que he marcado a continuación. Entiendo que en cualquier momento puedo optar por dejar de recibir comunicaciones de Radiometer.
    Al enviar este formulario confirmo que he revisado y comprendido la política de privacidad de datos.
  • Descargar el folleto

    Me gustaría descargar el folleto de ABL90 FLEX PLUS

    Me gustaría recibir noticias e información de Radiometer a través del canal que he marcado a continuación. Entiendo que en cualquier momento puedo optar por dejar de recibir comunicaciones de Radiometer.
    Al enviar este formulario confirmo que he revisado y comprendido la política de privacidad de datos.
  • Con Creatinina y Urea
  • Mezclado de la muestra y entrada automáticos
  • Micromodo de 45 µl para UCIN

Obtenga 19 parámetros críticos con una pequeña muestra de sangre

El analizador de gases en sangre ABL90 FLEX PLUS ha sido diseñado para pruebas de "point of care" (POC) en entornos clínicos de gran ajetreo como Urgencias, UCI, UCI de Neonatos, o sala de partos, en los que obtener rápidos resultados a partir de una muestra muy pequeña de sangre resulta de vital importancia para tomar decisiones diagnósticas críticas.
 
El ABL90 FLEX PLUS le ofrece resultados fiables en tan solo 35 segundos y de 19 parámetros (gases en sangre, electrólitos, metabolitos y cooximetría), a partir de jeringa, tubo capilar o tubo de ensayo.
 
Todo ello con una muestra de sangre de tan solo 65 µL.
 
Este amplio panel de parámetros críticos dentro de las pruebas de gases en sangre le ofrece más información clínica in situ y al instante, permitiéndole actuar a partir de los resultados con decisiones diagnósticas que salvan vidas.

Parámetros medidos

Blood gases: 
pH

Potencial de hidrógeno


El grado de acidez o alcalinidad de cualquier líquido (incluida la sangre) es una función de su concentración de iones hidrógeno [H+], y el pH es simplemente una forma de expresar la actividad de los iones hidrógeno. La relación entre el pH y la concentración de iones hidrógeno se describe así:


pH = -log aH+
where aH+ representando aH+ la actividad de los iones hidrógeno.


El pH bajo se asocia con acidosis, y el pH alto, con alcalosis [1,2].

 

1. CLSI. Blood gas and pH analysis and related measurements; Approved Guidelines. CLSI document CA46-A2, 29, 8. Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2009

2. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook

, pCO2

Presión parcial de oxígeno


La cantidad de oxígeno en la sangre se controla mediante diversas variables como la ventilación/perfusión. La pO2 es la presión parcial del oxígeno en una fase gaseosa en equilibrio con la sangre. La pO2 únicamente refleja una pequeña fracción (1–2 %) del oxígeno total en la sangre que se disuelve en el plasma sanguíneo [1]. El 98–99 % restante del oxígeno presente en la sangre está unido a la hemoglobina en los eritrocitos. La pO2 refleja principalmente la captación de oxígeno en los pulmones. [2]

1. Wettstein R, Wilkins R. Interpretation of blood gases. In: Clinical assessment in respiratory care, 6th ed. St. Louis: Mosby, 2010.
2. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.

, pO2

Presión parcial de oxígeno


La cantidad de oxígeno en la sangre se controla mediante diversas variables como la ventilación/perfusión. La pO2 es la presión parcial del oxígeno en una fase gaseosa en equilibrio con la sangre. La pO2 únicamente refleja una pequeña fracción (1–2 %) del oxígeno total en la sangre que se disuelve en el plasma sanguíneo [1]. El 98–99 % restante del oxígeno presente en la sangre está unido a la hemoglobina en los eritrocitos. La pO2 refleja principalmente la captación de oxígeno en los pulmones. [2]

1. Wettstein R, Wilkins R. Interpretation of blood gases. In: Clinical assessment in respiratory care, 6th ed. St. Louis: Mosby, 2010.
2. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.

Metabolites: 
cGlu

Glucosa


La glucosa, el carbohidrato más abundante en el metabolismo humano, sirve como fuente principal de energía intracelular (ver lactato). La glucosa se deriva principalmente de los carbohidratos dietéticos, pero también se produce (principalmente en el hígado y los riñones) a través del proceso anabólico de gluconeogénesis, y de la descomposición del glucógeno (glucogenólisis). Esta glucosa producida de forma endógena ayuda a mantener la concentración de glucosa en sangre dentro de los límites normales cuando no se dispone de glucosa derivada de la dieta; por ejemplo, entre comidas o durante períodos de inanición. [1].

1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.

, cLac

Lactato

El lactato, el anión que resulta de la disociación del ácido láctico, es un metabolito intracelular de la glucosa. Lo producen células musculares esqueléticas, glóbulos rojos (eritrocitos), el cerebro, y otros tejidos durante la producción de energía anaeróbica (glucólisis). El lactato se forma en el líquido intracelular a partir de piruvato; la reacción la cataliza la enzima lactato deshidrogenasa (LDH) [1,2].

1. Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 2004; 287: R502-16.
2. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.

, cCrea

Creatinina

La creatinina es un producto de desecho endógeno del metabolismo muscular derivado de la creatina, una molécula de gran importancia para la producción de energía dentro de las células musculares. La creatinina se elimina del cuerpo en la orina y su concentración en la sangre refleja la filtración glomerular y, por lo tanto, la función renal. [1]

1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.

, cUrea

Urea


La urea (fórmula molecular CO(NH2)2) es el principal producto de desecho nitrogenado del catabolismo de proteínas, que se elimina del cuerpo en la orina. Es el componente orgánico más abundante de la orina. La urea se transporta en sangre desde el hígado hasta los riñones, donde se filtra de la sangre y se excreta en la orina. La insuficiencia renal se asocia con la reducción de la excreción de urea en la orina y el consiguiente aumento de la concentración de urea en sangre (plasma/suero). [1]

1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.

Electrólitos: 
cCa2+

Calcio


El ion cálcico (Ca2+) es uno de los cationes más frecuentes en el cuerpo, donde aproximadamente el 1 % está presente en el líquido extracelular de la sangre. El Ca2+ desempeña un papel vital para la mineralización ósea y diversos procesos celulares como la contractilidad del corazón y la musculatura esquelética, la transmisión neuromuscular, la secreción hormonal y la acción en diversas reacciones enzimáticas como, por ejemplo, la coagulación de la sangre. [1].

1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.

, cCl-

Cloruro


El cloruro (Cl-) es el anión principal en el líquido extracelular y uno de los aniones más importantes en la sangre. La función principal del Cl- es mantener la presión osmótica, el equilibrio de líquidos, la actividad muscular, la neutralidad iónica en el plasma, y ayudar a dilucidar la causa de las alteraciones ácido-base. [1]

1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.

, cK+

Potasio


El potasio (K+) es el catión principal en el fluido intracelular, donde tiene una concentración 25 - 37 veces mayor (∼150 mmol/L en células de tejido, ∼105 mmol/L en eritrocitos) que en el líquido extracelular (∼4 mmol/L) [1, 2]. El K+ realiza varias funciones vitales en el cuerpo como la regulación de la excitabilidad neuromuscular, del ritmo cardíaco y del volumen intracelular y extracelular, así como del estado ácido-base. [3]

 

1. Burtis CA, Ashwood ER, Bruns DE. Tietz textbook of clinical chemistry and molecular diagnostics. 5th ed. St. Louis: Saunders Elsevier, 2012.
2. Engquist A. Fluids/Electrolytes/Nutrition. 1st ed. Copenhagen: Munksgaard, 1985.
3. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.

 

, cNa+

Sodio


El sodio (Na+) es el catión dominante en el líquido extracelular, donde presenta una concentración 14 veces mayor (∼140 mmol/L) que en el fluido intracelular (∼10 mmol/L). El Na+ contribuye de manera importante a la osmolalidad del líquido extracelular y su función principal es en gran parte el control y regulación del equilibrio hídrico, así como el mantenimiento de la presión arterial. El Na+ también es importante para transmitir impulsos nerviosos y activar la concreción muscular. [1]

1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.

Oximetry: 
COHb

Carboxihemoglobina


FCOHb es la fracción de hemoglobina total (ctHb) que está presente como carboxihemoglobina (COHb). Por convención, la fracción se expresa como un porcentaje (%). [1]

En el rango de 0–60 % la COHb en sangre arterial (COHb(a)) y venosa (COHb(v)) es similar; es decir, se puede analizar tanto sangre venosa como arterial [1]. En la mayoría de textos médicos la FCOHb(a) se denomina simplemente COHb. [2]

1. Lopez DM, Weingarten-Arams JS, Singer LP, Conway EE Jr. Relationship between arterial, mixed venous and internal jugular carboxyhemoglobin concentrations at low, medium and high concentrations in a piglet model of carbon monoxide toxicity. Crit Care Med 2000; 28: 1998-2001.

2. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.

, ctBil

Bilirrubina

La bilirrubina es el producto final amarillo resultante de la degradación del grupo hemo de la hemoglobina. Se transporta en la sangre desde su lugar de producción (el sistema reticuloendotelial) al hígado, donde se biotransforma antes de su excreción en la bilis. La ictericia, la decoloración amarilla patológica de la piel, se debe a una acumulación anormal de bilirrubina en los tejidos, y siempre se asocia con una concentración sanguínea elevada de bilirrubina (hiperbilirrubinemia). [1]

 

1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.

, ctHb

Hemoglobina total


La concentración de hemoglobina total (ctHb) en la sangre incluye oxihemoglobina (cO2Hb), desoxihemoglobina (cHHb), así como las especies de hemoglobina disfuncional que son incapaces de unir oxígeno:

carboxihemoglobina (cCOHb) (ver COHb), metahemoglobina (cMetHb) (ver MetHb) y sulfohemoglobina (cSulfHb).

Asi:

ctHb = cO2Hb + cHHb + cCOHb + cMetHb + cSulfHb

La SulfHb no está incluida en la c tHb notificada en la mayoría de los oxímetros por ser poco habitual. [1]

1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.

, FHbF

Fracción de hemoglobina fetal


FHbF en hemoglobina total en sangre. [1]

1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.

, FHHb

Fracción de desoxihemoglobina


FHHb en hemoglobina total en sangre. [1]

1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.

, MetHb

Metahemoglobina

FMetHb es la fracción de hemoglobina total (ctHb) que está presente como metahemoglobina (MetHb). Por convención, la fracción se expresa como un porcentaje (%) [1]. En la mayoría de los cuadros de texto médicos la MetHb(a) se denomina simplemente metahemoglobina (MetHb). [2]

1. CLSI. Blood gas and pH analysis and related measurements; Approved Guidelines. CLSI document CA46-A2, 29, 8. Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2009.

2. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.

 

, sO2
Saturación de oxígeno

La saturación de oxígeno (sO2) es la relación entre la concentración de oxihemoglobina y la concentración de hemoglobina funcional (es decir, oxihemoglobina (O2Hb) y desoxihemoglobina (HHb) capaz de transportar oxígeno [1].

La sO2 refleja la utilización de la capacidad de transporte de oxígeno disponible actualmente. En la sangre arterial un 98–99 % de oxígeno se transporta en eritrocitos unidos a la hemoglobina. El 1-2 % restante del oxígeno transportado en sangre se disuelve en el plasma sanguíneo: esta es la porción notificada como presión parcial de oxígeno (pO2) [2,3].

 

1. CLSI. Blood gas and pH analysis and related measurements; Approved Guidelines. CLSI document CA46-A2, 29, 8. Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2009.

2. Higgins C. Parameters that reflect the carbon dioxide content of blood. www.acutecaretesting.org Oct 2008.

, FO2Hb

Fracción de oxihemoglobina


FO2Hb en hemoglobina total en sangre. [1]

1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.

Su analizador de gases en sangre con ampliación del panel de parámetros

Al añadir la creatinina y la urea a su menú de pruebas, el analizador de gases en sangre ABL90 FLEX PLUS ofrece un rango más amplio de parámetros críticos en una plataforma compacta.

Tener los resultados de creatinina y urea en POC le proporcionará una información rápida sobre el estado renal de sus pacientes críticos.

Vea en este vídeo las mejoras que ofrece el analizador de gases en sangre ABL90 FLEX PLUS en tiempo de resultados, facilidad de manejo, parámetros y fiabilidad.

Mejora del flujo de pacientes en Urgencias con más parámetros críticos

Obtener resultados rápidos es crucial para superar los retos que supone la saturación de pacientes en Urgencias.
 
Los resultados de creatinina en el "point of care" le permiten identificar pacientes en riesgo de lesión renal aguda (LRA), así como evaluar rápidamente el estado renal del paciente antes de realizar pruebas de TC o IRM para determinar si existe riesgo de nefropatía inducida por contraste [1-3].
 
Además, los resultados de creatinina y urea pueden ayudarle a evaluar el estado de deshidratación, así como a identificar el origen de un sangrado gastrointestinal [1, 2].
 
Con la creatinina y la urea como parámetros de urgencia, puede tomar sus decisiones diagnósticas más rápidamente durante el triaje y optimizar el flujo de pacientes en Urgencias; dos mejoras significativas en los procesos.

Optimización de flujos de trabajo en la UCI: se acabaron las esperas por los resultados del laboratorio

La obtención más rápida de los resultados en la UCI le permitirá tomar decisiones más informadas sobre el tratamiento del paciente.

En la UCI, los resultados de creatinina y urea pueden:

  • ayudar a monitorizar la función renal del paciente [2]
  • ser útiles a la hora de predecir fallos cardiacos [2]
  • ser útiles para la monitorización de la eficiencia de la hemodiálisis y la evaluación de la gravedad de la pancreatitis [2]
  • indicar una enfermedad renal crónica (ERC), lo que le permitirá iniciar a tiempo el tratamiento adecuado [2].

Una solución inteligente para pruebas de atención crítica

Contacte con nosotros para más información sobre la obtención de resultados rápidos y fiables de creatinina, urea y otros 17 parámetros con el analizador de gases en sangre ABL90 FLEX PLUS.
 
Nos pondremos en contacto con usted por teléfono o correo electrónico lo antes posible.

Fuentes de conocimiento relacionadas

Déjenos ayudarle a evitar errores preanalíticos

Leer más sobre los errores preanalíticos más comunes y cómo evitarlos.

Guiando sus pasos en los análisis de gases en sangre

A través de tres vídeos de casos didácticos que ilustran la importancia de analizar los gases en sangre en pacientes críticos por EPOC, intoxicación y sepsis. En un segundo grupo le ofrecemos tres vídeos tutoriales de cómo realizar una punción arterial, cómo interpretar el equilibrio ácido-base y cómo leer el informe de gases en sangre.

Guía de parámetros de atención crítica

Descárguese esta guía gratuita sobre gases en sangre y otros parámetros clave en pruebas de atención crítica.

En este sitio web se utilizan cookies

Uso de cookies