
Analizador ABL90 FLEX PLUS
Su analizador de gases en sangre para las pruebas en el "point of care"
-
Con Creatinina y Urea
-
Mezclado de la muestra y entrada automáticos
-
Micromodo de 45 µl para UCIN
Obtenga 19 parámetros críticos con una pequeña muestra de sangre


Parámetros medidos
Potencial de hidrógeno
El grado de acidez o alcalinidad de cualquier líquido (incluida la sangre) es una función de su concentración de iones hidrógeno [H+], y el pH es simplemente una forma de expresar la actividad de los iones hidrógeno. La relación entre el pH y la concentración de iones hidrógeno se describe así:
pH = -log aH+
where aH+ representando aH+ la actividad de los iones hidrógeno.
El pH bajo se asocia con acidosis, y el pH alto, con alcalosis [1,2].
1. CLSI. Blood gas and pH analysis and related measurements; Approved Guidelines. CLSI document CA46-A2, 29, 8. Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2009
2. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook
Presión parcial de oxígeno
La cantidad de oxígeno en la sangre se controla mediante diversas variables como la ventilación/perfusión. La pO2 es la presión parcial del oxígeno en una fase gaseosa en equilibrio con la sangre. La pO2 únicamente refleja una pequeña fracción (1–2 %) del oxígeno total en la sangre que se disuelve en el plasma sanguíneo [1]. El 98–99 % restante del oxígeno presente en la sangre está unido a la hemoglobina en los eritrocitos. La pO2 refleja principalmente la captación de oxígeno en los pulmones. [2]
1. Wettstein R, Wilkins R. Interpretation of blood gases. In: Clinical assessment in respiratory care, 6th ed. St. Louis: Mosby, 2010.
2. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Presión parcial de oxígeno
La cantidad de oxígeno en la sangre se controla mediante diversas variables como la ventilación/perfusión. La pO2 es la presión parcial del oxígeno en una fase gaseosa en equilibrio con la sangre. La pO2 únicamente refleja una pequeña fracción (1–2 %) del oxígeno total en la sangre que se disuelve en el plasma sanguíneo [1]. El 98–99 % restante del oxígeno presente en la sangre está unido a la hemoglobina en los eritrocitos. La pO2 refleja principalmente la captación de oxígeno en los pulmones. [2]
1. Wettstein R, Wilkins R. Interpretation of blood gases. In: Clinical assessment in respiratory care, 6th ed. St. Louis: Mosby, 2010.
2. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Glucosa
La glucosa, el carbohidrato más abundante en el metabolismo humano, sirve como fuente principal de energía intracelular (ver lactato). La glucosa se deriva principalmente de los carbohidratos dietéticos, pero también se produce (principalmente en el hígado y los riñones) a través del proceso anabólico de gluconeogénesis, y de la descomposición del glucógeno (glucogenólisis). Esta glucosa producida de forma endógena ayuda a mantener la concentración de glucosa en sangre dentro de los límites normales cuando no se dispone de glucosa derivada de la dieta; por ejemplo, entre comidas o durante períodos de inanición. [1].
1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Lactato
El lactato, el anión que resulta de la disociación del ácido láctico, es un metabolito intracelular de la glucosa. Lo producen células musculares esqueléticas, glóbulos rojos (eritrocitos), el cerebro, y otros tejidos durante la producción de energía anaeróbica (glucólisis). El lactato se forma en el líquido intracelular a partir de piruvato; la reacción la cataliza la enzima lactato deshidrogenasa (LDH) [1,2].
1. Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 2004; 287: R502-16.
2. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Creatinina
La creatinina es un producto de desecho endógeno del metabolismo muscular derivado de la creatina, una molécula de gran importancia para la producción de energía dentro de las células musculares. La creatinina se elimina del cuerpo en la orina y su concentración en la sangre refleja la filtración glomerular y, por lo tanto, la función renal. [1]
1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Urea
La urea (fórmula molecular CO(NH2)2) es el principal producto de desecho nitrogenado del catabolismo de proteínas, que se elimina del cuerpo en la orina. Es el componente orgánico más abundante de la orina. La urea se transporta en sangre desde el hígado hasta los riñones, donde se filtra de la sangre y se excreta en la orina. La insuficiencia renal se asocia con la reducción de la excreción de urea en la orina y el consiguiente aumento de la concentración de urea en sangre (plasma/suero). [1]
1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Calcio
El ion cálcico (Ca2+) es uno de los cationes más frecuentes en el cuerpo, donde aproximadamente el 1 % está presente en el líquido extracelular de la sangre. El Ca2+ desempeña un papel vital para la mineralización ósea y diversos procesos celulares como la contractilidad del corazón y la musculatura esquelética, la transmisión neuromuscular, la secreción hormonal y la acción en diversas reacciones enzimáticas como, por ejemplo, la coagulación de la sangre. [1].
1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Cloruro
El cloruro (Cl-) es el anión principal en el líquido extracelular y uno de los aniones más importantes en la sangre. La función principal del Cl- es mantener la presión osmótica, el equilibrio de líquidos, la actividad muscular, la neutralidad iónica en el plasma, y ayudar a dilucidar la causa de las alteraciones ácido-base. [1]
1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Potasio
El potasio (K+) es el catión principal en el fluido intracelular, donde tiene una concentración 25 - 37 veces mayor (∼150 mmol/L en células de tejido, ∼105 mmol/L en eritrocitos) que en el líquido extracelular (∼4 mmol/L) [1, 2]. El K+ realiza varias funciones vitales en el cuerpo como la regulación de la excitabilidad neuromuscular, del ritmo cardíaco y del volumen intracelular y extracelular, así como del estado ácido-base. [3]
1. Burtis CA, Ashwood ER, Bruns DE. Tietz textbook of clinical chemistry and molecular diagnostics. 5th ed. St. Louis: Saunders Elsevier, 2012.
2. Engquist A. Fluids/Electrolytes/Nutrition. 1st ed. Copenhagen: Munksgaard, 1985.
3. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Sodio
El sodio (Na+) es el catión dominante en el líquido extracelular, donde presenta una concentración 14 veces mayor (∼140 mmol/L) que en el fluido intracelular (∼10 mmol/L). El Na+ contribuye de manera importante a la osmolalidad del líquido extracelular y su función principal es en gran parte el control y regulación del equilibrio hídrico, así como el mantenimiento de la presión arterial. El Na+ también es importante para transmitir impulsos nerviosos y activar la concreción muscular. [1]
1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Carboxihemoglobina
FCOHb es la fracción de hemoglobina total (ctHb) que está presente como carboxihemoglobina (COHb). Por convención, la fracción se expresa como un porcentaje (%). [1]
En el rango de 0–60 % la COHb en sangre arterial (COHb(a)) y venosa (COHb(v)) es similar; es decir, se puede analizar tanto sangre venosa como arterial [1]. En la mayoría de textos médicos la FCOHb(a) se denomina simplemente COHb. [2]
1. Lopez DM, Weingarten-Arams JS, Singer LP, Conway EE Jr. Relationship between arterial, mixed venous and internal jugular carboxyhemoglobin concentrations at low, medium and high concentrations in a piglet model of carbon monoxide toxicity. Crit Care Med 2000; 28: 1998-2001.
2. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Bilirrubina
La bilirrubina es el producto final amarillo resultante de la degradación del grupo hemo de la hemoglobina. Se transporta en la sangre desde su lugar de producción (el sistema reticuloendotelial) al hígado, donde se biotransforma antes de su excreción en la bilis. La ictericia, la decoloración amarilla patológica de la piel, se debe a una acumulación anormal de bilirrubina en los tejidos, y siempre se asocia con una concentración sanguínea elevada de bilirrubina (hiperbilirrubinemia). [1]
1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Hemoglobina total
La concentración de hemoglobina total (ctHb) en la sangre incluye oxihemoglobina (cO2Hb), desoxihemoglobina (cHHb), así como las especies de hemoglobina disfuncional que son incapaces de unir oxígeno:
carboxihemoglobina (cCOHb) (ver COHb), metahemoglobina (cMetHb) (ver MetHb) y sulfohemoglobina (cSulfHb).
Asi:
ctHb = cO2Hb + cHHb + cCOHb + cMetHb + cSulfHb
La SulfHb no está incluida en la c tHb notificada en la mayoría de los oxímetros por ser poco habitual. [1]
1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Fracción de hemoglobina fetal
FHbF en hemoglobina total en sangre. [1]
1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Fracción de desoxihemoglobina
FHHb en hemoglobina total en sangre. [1]
1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Metahemoglobina
FMetHb es la fracción de hemoglobina total (ctHb) que está presente como metahemoglobina (MetHb). Por convención, la fracción se expresa como un porcentaje (%) [1]. En la mayoría de los cuadros de texto médicos la MetHb(a) se denomina simplemente metahemoglobina (MetHb). [2]
1. CLSI. Blood gas and pH analysis and related measurements; Approved Guidelines. CLSI document CA46-A2, 29, 8. Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2009.
2. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
La saturación de oxígeno (sO2) es la relación entre la concentración de oxihemoglobina y la concentración de hemoglobina funcional (es decir, oxihemoglobina (O2Hb) y desoxihemoglobina (HHb) capaz de transportar oxígeno [1].
La sO2 refleja la utilización de la capacidad de transporte de oxígeno disponible actualmente. En la sangre arterial un 98–99 % de oxígeno se transporta en eritrocitos unidos a la hemoglobina. El 1-2 % restante del oxígeno transportado en sangre se disuelve en el plasma sanguíneo: esta es la porción notificada como presión parcial de oxígeno (pO2) [2,3].
1. CLSI. Blood gas and pH analysis and related measurements; Approved Guidelines. CLSI document CA46-A2, 29, 8. Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2009.
2. Higgins C. Parameters that reflect the carbon dioxide content of blood. www.acutecaretesting.org Oct 2008.
Fracción de oxihemoglobina
FO2Hb en hemoglobina total en sangre. [1]
1. Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on https://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.
Su analizador de gases en sangre con ampliación del panel de parámetros
Al añadir la creatinina y la urea a su menú de pruebas, el analizador de gases en sangre ABL90 FLEX PLUS ofrece un rango más amplio de parámetros críticos en una plataforma compacta.
Tener los resultados de creatinina y urea en POC le proporcionará una información rápida sobre el estado renal de sus pacientes críticos.
Vea en este vídeo las mejoras que ofrece el analizador de gases en sangre ABL90 FLEX PLUS en tiempo de resultados, facilidad de manejo, parámetros y fiabilidad.
Click here to renew consent


Mejora del flujo de pacientes en Urgencias con más parámetros críticos
Los resultados de creatinina en el "point of care" le permiten identificar pacientes en riesgo de lesión renal aguda (LRA), así como evaluar rápidamente el estado renal del paciente antes de realizar pruebas de TC o IRM para determinar si existe riesgo de nefropatía inducida por contraste [1-3].
Además, los resultados de creatinina y urea pueden ayudarle a evaluar el estado de deshidratación, así como a identificar el origen de un sangrado gastrointestinal [1, 2].
Con la creatinina y la urea como parámetros de urgencia, puede tomar sus decisiones diagnósticas más rápidamente durante el triaje y optimizar el flujo de pacientes en Urgencias; dos mejoras significativas en los procesos.
Optimización de flujos de trabajo en la UCI: se acabaron las esperas por los resultados del laboratorio
La obtención más rápida de los resultados en la UCI le permitirá tomar decisiones más informadas sobre el tratamiento del paciente.
En la UCI, los resultados de creatinina y urea pueden:
- ayudar a monitorizar la función renal del paciente [2]
- ser útiles a la hora de predecir fallos cardiacos [2]
- ser útiles para la monitorización de la eficiencia de la hemodiálisis y la evaluación de la gravedad de la pancreatitis [2]
- indicar una enfermedad renal crónica (ERC), lo que le permitirá iniciar a tiempo el tratamiento adecuado [2].


Una solución inteligente para pruebas de atención crítica



Productos y soluciones relacionadas
Fuentes de conocimiento relacionadas

Guiando sus pasos en los análisis de gases en sangre
Referencias
- https://acutecaretesting.org/en/articles/urea-and-the-clinical-value-of-measuring-blood-urea-concentration
- https://acutecaretesting.org/en/articles/urea-and-creatinine-concentration-the-urea-creatinine-ratio
- Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014. As accessed on http://www.radiometer.com/en/knowledge-center/handbooks/acute-care-testing-handbook.